Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Am J Cancer Res ; 14(2): 507-525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455419

RESUMO

Arsenic trioxide (ATO) is well known for its inhibitory effects on cancer progression, including lung adenocarcinoma (LUAD), but the molecular mechanism remains elusive. This study aimed to investigate the roles of ATO in regulating LUAD stem cells (LASCs) and the underlying mechanisms. To induce LASCs, cells cultured in an F12 medium, containing B27, epidermal growth factor, and basic fibroblast growth factor, induced LASCs. LASCs stemness was assessed through tumor sphere formation assay, and percentages of CD133+ cells were detected by flow cytometry. The Cell Counting Kit-8 method was used to assess LASCs viability, while reactive oxygen species (ROS) and iron ion levels were quantitated by fluorescence microscopy and spectrophotometry, respectively, and total m6A levels were measured by dot blot. Additionally, LASCs mitochondrial alterations were analyzed via transmission electron microscopy. Finally, the tumorigenicity of LASCs was assessed using a cancer cell line-based xenograft model. Tumor sphere formation and CD133 expression were used to validate the successful induction of LASCs from A549 and NCI-H1975 cells. ATO significantly inhibited proliferation, reduced ZC3H13 expression and total m6A modification levels, and increased ROS and iron ion content, but repressed sphere formation and CD133 expression in LASCs. ZC3H13 overexpression or ferrostatin-1 treatment abrogated LASCs stemness inhibition caused by ATO treatment, and interference with ZC3H13 inhibited LASCs stemness. Furthermore, the promotion of LASCs ferroptosis by ATO was effectively mitigated by ZC3H13 overexpression, while interference with ZC3H13 further promoted ferroptosis. Moreover, si-ZC3H13 promoted ferroptosis and impaired stemness in LASCs, which ferrostatin-1 abrogated. Finally, ZC3H13 overexpression alleviated the inhibitory effects of ATO on LASCs tumorigenicity. Taken together, ATO treatment substantially impaired the stemness of LUAD stem cells by promoting the ferroptosis program, which was mediated by its ZC3H13 gene expression inhibition to suppress m6A medication.

2.
ACS Appl Mater Interfaces ; 16(13): 15946-15958, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38519414

RESUMO

Listeria monocytogenes (LM) is one of the most invasive foodborne pathogens that cause listeriosis, making it imperative to explore novel inhibiting strategies for alleviating its infection. The adhesion and invasion of LM within host cells are partly orchestrated by an invasin protein internalin A (InlA), which facilitates bacterial passage by interacting with the host cell E-cadherin (E-Cad). Hence, in this work, we proposed an aptamer blocking strategy by binding to the region on InlA that directly mediated E-Cad receptor engagement, thereby alleviating LM infection. An aptamer GA8 with a robust G-quadruplex (G4) structural feature was designed through truncation and base mutation from the original aptamer A8. The molecular docking and dynamics analysis showed that the InlA/aptamer GA8 binding interface was highly overlapping with the natural InlA/E-Cad binding interface, which confirmed that GA8 can tightly and stably bind InlA and block more distinct epitopes on InlA that involved the interaction with E-Cad. On the cellular level, it was confirmed that GA8 effectively blocked LM adhesion with an inhibition rate of 78%. Overall, the robust G4 aptamer-mediated design provides a new direction for the development of inhibitors against other wide-ranging and emerging pathogens.


Assuntos
Listeria monocytogenes , Listeriose , Humanos , Listeria monocytogenes/metabolismo , Simulação de Acoplamento Molecular , Listeriose/tratamento farmacológico , Listeriose/genética , Listeriose/metabolismo , Mutação , Proteínas de Bactérias/metabolismo
3.
ACS Appl Mater Interfaces ; 16(9): 11809-11820, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38386848

RESUMO

Building multifunctional platforms for integrating the detection and control of hazards has great significance in food safety and environment protection. Herein, bimetallic Fe-Co-based metal-organic frameworks (Fe-Co-MOFs) peroxidase mimics are prepared and applied to develop a bifunctional platform for the synergetic sensitive detection and controllable degradation of aflatoxin B1 (AFB1). On the one hand, Fe-Co-MOFs with excellent peroxidase-like activity are combined with target-induced catalyzed hairpin assembly (CHA) to construct a colorimetric aptasensor for the detection of AFB1. Specifically, the binding of aptamer with AFB1 releases the prelocked Trigger to initiate the CHA cycle between hairpin H2-modified Fe-Co-MOFs and hairpin H1-tethered magnetic nanoparticles to form complexes. After magnetic separation, the colorimetric signal of the supernatant in the presence of TMB and H2O2 is inversely proportional to the target contents. Under optimal conditions, this biosensor enables the analysis of AFB1 with a limit of detection of 6.44 pg/mL, and high selectivity and satisfactory recovery in real samples are obtained. On the other hand, Fe-Co-MOFs with remarkable Fenton-like catalytic degradation performance for organic contaminants are further used for the detoxification of AFB1 after colorimetric detection. The AFB1 is almost completely removed within 120 min. Overall, the introduction of CHA improves the sensing sensitivity; efficient postcolorimetric-detection degradation of AFB1 reduces the secondary contamination and risk to the experimental environment and operators. This strategy is expected to provide ideas for designing other multifunctional platforms to integrate the detection and degradation of various hazards.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Estruturas Metalorgânicas , Peroxidase , Aflatoxina B1/análise , Estruturas Metalorgânicas/química , Colorimetria , Peróxido de Hidrogênio , Corantes , Aptâmeros de Nucleotídeos/química , Limite de Detecção
4.
Anal Chim Acta ; 1288: 342150, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220284

RESUMO

BACKGROUND: Maillard reaction involves the polymerization, condensation, and other reactions between compounds containing free amino groups and reducing sugars or carbonyl compounds during heat processing. This process endows unique flavors and colors to food, while it can also produce numerous hazards. Acrylamide (AAm) is one of Maillard's hazards with neurotoxicity and carcinogenicity, these effects can trigger mutations and alternations in gene expression in human cells and accelerate organ aging. An accurate and reliable acrylamide detection method with high sensitivity and specificity for future regulatory activities is urgently needed. RESULTS: Herein, we constructed a colorimetric aptasensor with the hybridization of MIL-glucose oxidase (MGzyme)-cDNA and magnetic nanoparticle-aptamer (MNP-Apt) to specifically detect AAm. The incorporation of MB-Apt and AAm released MGzyme-cDNA in the supernatant, took the supernatant out, with the addition of glucose and TMB, MGzyme would oxidize glucose, the resulting •OH facilitated the oxidation of colorless TMB to blue ox-TMB. The absorbance value at 652 nm, which indicates the characteristic absorption peak of ox-TMB, exhibited a proportion to the concentration of AAm. MGzyme avoided the addition of harmful intermediate H2O2 and created an acid microenvironment for the catalytic reaction. MNP-Apt possessed the advantages of high specificity and simplified separation. Under optimal conditions, this method displayed a linear range of 0.01-100 µM with the limit of detection of 1.53 nM. With the spiked analysis data cross-verified by ELISA kit, this aptasensor was proven to specifically detect AAm at low concentrations. SIGNIFICANCE: This colorimetric aptasensor was the integration of aptamer and the enzyme-cascade system, which could broaden the applicable range of enzyme-cascade system, break the limits of specific detection of substrates, eliminate the need for harmful intermediates, improve the reaction efficiency, implement the specific detection, whilst enabling the accurate detection of AAm. Given these remarkable performances, this method has shown significant potential in the field of food safety inspection.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Humanos , Colorimetria/métodos , DNA Complementar , Peróxido de Hidrogênio/química , Glucose , Acrilamidas , Limite de Detecção , Técnicas Biossensoriais/métodos
5.
Biosens Bioelectron ; 249: 116022, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219468

RESUMO

Sarafloxacin (SAR), one of the most widely used fluoroquinolone antibiotics, is a serious threat to aquatic environments and human health due to its illegal abuse. Herein, we first screened an aptamer (SAR-1) that specifically binds to SAR using capture-SELEX technology. Based on molecular docking technology, SAR-1 was gradually truncated, and a short SAR-1a with better affinity and specificity was obtained. The optimal SAR-1a was further combined with a Pt nanoparticle (Pt NP)- decorated bimetallic Fe/Co-MOF to fabricate a multimode sensing platform for SAR determination. The Fe/Co-MOF@Pt NPs exhibited excellent peroxidase-like activity, which catalyzed the H2O2-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), thereby enabling visual detection of SAR. Meanwhile, the generated oxTMB can also produce SERS responses and be used for the SERS detection of SAR. Moreover, the inherent fluorescence property of Fe/Co-MOF@Pt NPs enabled fluorescence detection of SAR. The designed triple-readout aptasensor showed good sensitivity for SAR detection with limits of detection of 0.125 ng/mL (fluorescent mode) and 0.05 ng/mL (colorimetric and SERS mode). The aptamer-based triple-mode sensing platform provided mutual verification of detection results in different output modes, effectively improving the assay accuracy and providing a promising tool for highly sensitive, selective, and accurate determination of SAR in daily life.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ciprofloxacina/análogos & derivados , Humanos , Colorimetria/métodos , Peróxido de Hidrogênio , Simulação de Acoplamento Molecular , Técnicas Biossensoriais/métodos
6.
Talanta ; 270: 125636, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211356

RESUMO

Shiga toxin type II (Stx2), the major virulence component of enterohemorrhagic Escherichia coli, is strongly associated with the life-threatening hemolytic uremic syndrome thus posing a substantial risk to food safety and human health. In this work, a dual-mode aptasensor with colorimetric and surface-enhanced Raman scattering was developed for Stx2 specific detection based on noble metal nanoparticles and Raman reporter loaded metal-organic framework (Mn/Fe-MIL(53)@AuNSs-MBA). The Mn/Fe-MIL(53)@AuNSs could catalyze the H2O2-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), thereby enabling visual detection. Meanwhile, the SERS signal from MBA can be enhanced by the decorated AuNSs. Under optimal conditions, a linear range of 0.05-500 ng/mL with limit of detection (LOD) of 26 pg/mL was achieved in colorimetric mode and a linear range of 5-1000 ng/mL with LOD of 0.82 ng/mL in SERS mode, in which the dual-mode results complement each other, widening the linear range, increasing the accuracy and reliability of the detection. The method was further applied to the detection of Stx2 in milk with average recovery of 101.1 %, demonstrating its superior potential for bacterial toxin monitoring.


Assuntos
Nanopartículas Metálicas , Toxina Shiga , Humanos , Colorimetria/métodos , Reprodutibilidade dos Testes , Peróxido de Hidrogênio , Limite de Detecção , Análise Espectral Raman/métodos , Ouro
7.
Anal Chem ; 95(50): 18611-18618, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38057995

RESUMO

Deoxynivalenol (DON) is a mycotoxin secreted by Fusarium species, posing great harm to food safety and human health. Therefore, it is of great significance to study its toxic effects and mechanism. miR-34a is a representative biomarker during the process of DON-induced apoptosis. Herein, a DON-triggered dual-color composite probe was constructed for simultaneous imaging of DON and miR-34a in living cells. The aptamer blocks the recognition sequence of miR-34a to realize DON-triggered cell imaging. The specific binding of DON with its aptamer and HCR induced by miR-34a resulted in the recovery of fluorescence of the dual-color Au NCs. Under the optimal conditions, the correlation between the relative fluorescence intensities of dual-color Au NCs showed good linear relationships with the logarithm of DON and miR-34a concentration, respectively. With the increase in DON concentration (0-20 µg/mL) and stimulation time (0-12 h), the fluorescence of dual-color Au NCs gradually recovered. This dual-color Au NCs composite probe can realize simultaneous detection of DON and miR-34a induced by DON, which is significant for verifying the cytotoxic mechanism of DON.


Assuntos
MicroRNAs , Micotoxinas , Tricotecenos , Humanos , Ouro , Tricotecenos/toxicidade , Micotoxinas/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo
8.
Talanta ; 265: 124891, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442002

RESUMO

Herein, a SiO2@Ag NPs core/shell nanoparticles were synthesized to fabricate a surface-enhanced Raman spectroscopy (SERS) sensor for the simultaneous determination of histamine (HIS) and tyramine (TYR) based on specific aptamer recognition and ratiometric strategy. SiO2@Ag NPs with 4-thiosaminophenol (4-ATP) and Nile blue A (NBA) molecules were used as an internal standard (IS) and labeled with aptamers corresponding to HIS and TYR, respectively. Raman reporter molecules ROX and Cy5 labeled complementary DNA (cDNA) were then hybridized with aptamers to form rigid double-stranded DNA. After the HIS and TYR were captured by their aptamers, resulting in the dissociation of cDNA and separated from the SERS substrate. Therefore, the SERS signal intensity at 1503 cm-1 of ROX and 1358 cm-1 of Cy5 tagged on the terminal of cDNA decreased with the concentration of HIS and TYR increasing, while the SERS signal intensity at 1079 cm-1 of 4-APT and 592 cm-1 of NBA on the substrate remain stable. Thus, the concentrations of HIS and TYR can be determined by the I1503/I1079 and I1358/I592 values, respectively. This sensing strategy achieves a lower detection limit of 0.2 ng/mL for HIS and 0.05 ng/mL for TYR, respectively, demonstrating promising applications in sensitive detection of BAs in animal-derived foodstuff.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Histamina , DNA Complementar , Dióxido de Silício/química , Aptâmeros de Nucleotídeos/química , Ouro/química , Análise Espectral Raman/métodos , Peixes , Nanopartículas Metálicas/química , Limite de Detecção , Técnicas Biossensoriais/métodos
9.
Anal Chim Acta ; 1244: 340846, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737148

RESUMO

Deoxynivalenol (DON), a common mycotoxin produced by Fusarium species, poses a great threat to human and animal body. Hence, it is of significance to develop an ultrasensitive and reliable method for DON detection. Herein, a fluorescence and surface-enhanced Raman scattering (FL-SERS) dual-mode aptasensor was designed for the detection of DON based on gold nanoclusters (Au NCs) and silver nanoparticles modified metal-polydopamine framework (Ag NPs/MPDA). In this aptasensor, complementary DNA modified Au NCs (cDNA-Au NCs) was selected as fluorescence probe, and 6-carboxytetramethylrhodamine (TAMRA)-labeled aptamer modified Ag NPs/MPDA (Ag NPs/MPDA-Apt-TAMRA) was employed as SERS probe, in which Ag NPs/MPDA acted as SERS substance and fluorescence quencher, and TAMRA acted as Raman label. The superior binding affinity of the aptamer with DON to cDNA can regulate the fluorescence and Raman signal intensities and realize the quantitative determination of DON. Under the optimal conditions, the aptasensor exhibited a low detection limit of 0.08 ng mL-1 (0.1-100 ng mL-1) in FL mode and 0.06 ng mL-1 (0.1-100 ng mL-1) in SERS mode. In addition, it was successfully applied for DON detection in wheat flour. We believe that the proposed FL-SERS strategy has a promising application in the detection of mycotoxins.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Animais , Humanos , Nanopartículas Metálicas/química , Prata/química , Ouro/química , Análise Espectral Raman/métodos , DNA Complementar , Farinha , Triticum , Oligonucleotídeos , Limite de Detecção , Aptâmeros de Nucleotídeos/química
10.
Endocrinology ; 164(4)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36801988

RESUMO

Thyroid hormone increases energy expenditure. Its action is mediated by TR, nuclear receptors present in peripheral tissues and in the central nervous system, particularly in hypothalamic neurons. Here, we address the importance of thyroid hormone signaling in neurons, in general for the regulation of energy expenditure. We generated mice devoid of functional TR in neurons using the Cre/LoxP system. In hypothalamus, which is the center for metabolic regulation, mutations were present in 20% to 42% of the neurons. Phenotyping was performed under physiological conditions that trigger adaptive thermogenesis: cold and high-fat diet (HFD) feeding. Mutant mice displayed impaired thermogenic potential in brown and inguinal white adipose tissues and were more prone to diet-induced obesity. They showed a decreased energy expenditure on chow diet and gained more weight on HFD. This higher sensitivity to obesity disappeared at thermoneutrality. Concomitantly, the AMPK pathway was activated in the ventromedial hypothalamus of the mutants as compared with the controls. In agreement, sympathetic nervous system (SNS) output, visualized by tyrosine hydroxylase expression, was lower in the brown adipose tissue of the mutants. In contrast, absence of TR signaling in the mutants did not affect their ability to respond to cold exposure. This study provides the first genetic evidence that thyroid hormone signaling exerts a significant influence in neurons to stimulate energy expenditure in some physiological context of adaptive thermogenesis. TR function in neurons to limit weight gain in response to HFD and this effect is associated with a potentiation of SNS output.


Assuntos
Obesidade , Hormônios Tireóideos , Masculino , Camundongos , Animais , Obesidade/genética , Obesidade/metabolismo , Hormônios Tireóideos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo Marrom/metabolismo , Neurônios/metabolismo , Termogênese/fisiologia , Metabolismo Energético/genética
11.
Food Chem ; 410: 135425, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634559

RESUMO

Malachite green (MG), as a parasiticide, is widely used in aquaculture to increase the production of the fishery industry. It poses a great danger to both the food system and the human body. In this study, a one-pot reverse microemulsion polymerization was employed to combine the gold nanoclusters (AuNCs) with molecularly imprinted polymers (MIPs) and covalent organic frameworks (COFs) to synthesize an efficient fluorescent hybrid probe (AuNCs@COFs@MIPs) for selective detection of MG. The specific recognition of AuNCs@COFs@MIPs towards MG triggers the fluorescence quenching of AuNCs. The fluorescent response was linearly related to the concentration over the range of 10-150 nmol/L with a limit of detection of 2.78 nmol/L. In addition, the proposed probe was further applied to fish and water samples. A favorable recovery ranged from 97.34 to 101.51 % toward trace amounts of MG indicating its promising application for detecting residue of veterinary drugs.


Assuntos
Estruturas Metalorgânicas , Impressão Molecular , Pontos Quânticos , Animais , Humanos , Estruturas Metalorgânicas/química , Limite de Detecção , Ouro/química , Pontos Quânticos/química , Corantes Fluorescentes/química
12.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36660935

RESUMO

Food safety is a global issue in public hygiene. The accurate, sensitive, and on-site detection of various food contaminants performs significant implications. However, traditional methods suffer from the time-consuming and professional operation, restricting their on-site application. Hydrogels with the merits of highly porous structure, high biocompatibility, good shape-adaptability, and stimuli-responsiveness offer a promising biomaterial to design sensors for ensuring food safety. This review describes the emerging applications of hydrogel-based sensors in food safety inspection in recent years. In particular, this study elaborates on their fabrication strategies and unique sensing mechanisms depending on whether the hydrogel is stimuli-responsive or not. Stimuli-responsive hydrogels can be integrated with various functional ligands for sensitive and convenient detection via signal amplification and transduction; while non-stimuli-responsive hydrogels are mainly used as solid-state encapsulating carriers for signal probe, nanomaterial, or cell and as conductive media. In addition, their existing challenges, future perspectives, and application prospects are discussed. These practices greatly enrich the application scenarios and improve the detection performance of hydrogel-based sensors in food safety detection.

13.
Talanta ; 251: 123739, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931009

RESUMO

Levamisole (LEV) is a veterinary drug that often remains in animal food. Consuming products containing high levels of LEV will cause a series of harmful reactions to human health. This work describes the Capture-SELEX (Capture-systematic evolution of ligands by exponential enrichment) screening strategy of LEV aptamers, using streptavidin modified agarose beads as a solid phase medium to separate target-bound and unbound ssDNA. The affinity and specificity of candidate aptamers were determined by SYBR Green I (SGI) dye and isothermal titration calorimetry (ITC), in which LEV-5 showed good binding affinity and specificity, and the dissociation constant was 66.15 ± 11.86 nM. Circular dichroism (CD) was used to characterize aptamer conformational changes before and after target binding, including increased helicity and enhanced base stacking. To evaluate whether this aptamer can be used for LEV detection, a colorimetric-surface-enhanced Raman spectroscopy (colorimetric-SERS) dual-mode aptasensor was constructed based on the peroxidase-like activity and SERS effect of AuNPs/Cu-TCPP(Fe) nanosheets. The detection limits of this dual-mode aptasensor for LEV were 5 nM and 1.12 nM, respectively. This aptamer-based method was further successfully used to detect LEV in milk, with recoveries ranging from 94.95% to 111.2%, providing a potential application for the detection of harmful substances in food.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Drogas Veterinárias , Animais , Humanos , Aptâmeros de Nucleotídeos/química , Colorimetria/métodos , Ouro/química , Levamisol , Limite de Detecção , Nanopartículas Metálicas/química , Peroxidases , Porfirinas , Técnica de Seleção de Aptâmeros/métodos , Sefarose , Estreptavidina , Ferro , Cobre
14.
Food Chem ; 404(Pt B): 134750, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36444087

RESUMO

A portable paper-based microfluidic aptasensor is established to simultaneously and visually detect zearalenone (ZEN) and ochratoxin A (OTA). The targets at the sample zone can migrate to two detection zones through dual-channels and result in green and blue fluorescence recovery. This is due to the specific recognition by a respective aptamer that destroys fluorescence resonance energy transfer (FRET) from dual-color upconversion nanoparticles (UCNPs) to Cu-TCPP nanosheets. By capturing fluorescent images and analyzing the corresponding RGB value via a smartphone, ZEN and OTA can be analyzed with limits of detection down to 0.44 ng/mL and 0.098 ng/mL in the linear ranges of 0.5-100 ng/mL and 0.1-50 ng/mL, respectively. Satisfactory recoveries are also obtained for ZEN (94.5-103.7 %) and OTA (92.2-106.8 %) in corn flour. With the advantages of simple operation, low sample consumption, and broad adaptability, this promising platform allows for the on-site detection of multiple hazards in food.


Assuntos
Micotoxinas , Nanopartículas , Zearalenona , Farinha , Amido , Zea mays
15.
Talanta ; 252: 123850, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049339

RESUMO

Chlorpromazine is a phenothiazine representative drug that can be used to anesthetize and calm animals. However, chlorpromazine excess may lead to residual persistence in edible tissues, which is potentially harmful to human health and animal production. In this work, high affinity and specificity aptamers against chlorpromazine were screened out based on Capture-SELEX. After ten rounds of screening, the candidate aptamers were obtained. The optimal aptamer of CHL-3 was obtained by isothermal titration calorimetry (ITC) and SYBR Green I (SGI) fluorescence-competition methods. The Kd value of CHL-3 was 69.8 ± 9.81 nM. Subsequently, the Uio-66-NH2 material was prepared, filled with rhodamine 6G (Rho 6G) dye into the pore, and sealed with CHL-3, and fluorescence probes were obtained. The ratiometric fluorescence detection method was established to detect the concentration of chlorpromazine. A linear relationship was obtained in a range of 1-100 nM, with a lower detection limit of 0.67 nM. Meanwhile, a good recovery was shown in spiked food samples, such as eggs and milk. These results indicate that the constructed ratiometric fluorescence strategy can be successfully applied in food detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Estruturas Metalorgânicas , Animais , Humanos , Aptâmeros de Nucleotídeos/química , Clorpromazina , Limite de Detecção , Técnica de Seleção de Aptâmeros , Técnicas Biossensoriais/métodos
16.
ACS Sens ; 7(12): 3947-3955, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36454704

RESUMO

Excessive use of antibiotics in aquaculture severely endangers human health and ecosystems, which has raised significant concerns in recent years. However, conventional laboratory-based approaches regularly required time or skilled manpower. Herein, we propose a point-of-care-testing (POCT) biosensor detection device for the simultaneous determination of multiantibiotics without complex equipment or professional operators. A laser-printed paper-based microfluidic chip loaded with multicolor fluorescence nanoprobes (mCD-µPAD) was developed to rapidly detect sulfamethazine (SMZ), oxytetracycline (OTC), and chloramphenicol (CAP) on-site. These "fluorescence off" detection probes composed of carbon dots (CDs) conjugated with aptamers (donor) and MoS2 nanosheets (acceptor) (CD-apt-MoS2) were based on Förster resonance energy transfer. Upon the addition of target antibiotics, the significantly recovered fluorescence signal on the µPAD can be sensitively perceived by employing a 3D-printed portable detection box through a smartphone. Under optimal conditions, this µPAD allowed for a rapid response of 15 min toward SMZ, OTC, and CAP with considerable sensitivities of 0.47, 0.48, and 0.34 ng/mL, respectively. In shrimp samples, the recoveries were 95.2-101.2, 96.4-105, and 96.7-106.1% with RSD below 6%. This paper-based sensor opens an avenue for on-site, high-throughput, and rapid detection methods and can be widely used in POCT in food safety.


Assuntos
Técnicas Biossensoriais , Oxitetraciclina , Humanos , Microfluídica , Carbono , Ecossistema , Molibdênio , Antibacterianos , Cloranfenicol/análise , Técnicas Biossensoriais/métodos
17.
Mikrochim Acta ; 190(1): 39, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585487

RESUMO

Zeolitic imidazolate framework (ZIF-8) base-aptamer "gate-lock" biomaterial probes have been synthesized for monitoring intracellular deoxynivalenol (DON) and cytochrome c (cyt c) levels. The aptamer and organic fluorescent dye were regarded as a recognition element and a sensing element, respectively. In the presence of DON, the aptamers of DON and cyt c were specifically bound with the DON and induced cyt c, leading to the dissociation of aptamers from the porous surface of the probes. The gate was subsequently opened to release methylene blue (MB) and Rhodamine 6G (Rh6G), and their fluorescence (emission of MB at 700 nm and Rh6G at 550 nm) significantly recovered within 6 h. Cell imaging successfully monitored the exposure of DON and the biological process of cyt c discharge triggered by the activation of the DON-induced apoptosis pathway. In addition, the response between DON and cyt c was observed during the apoptosis process, which is of high significance for the comprehensive and systematic development of mycotoxins cytotoxicity.


Assuntos
Aptâmeros de Nucleotídeos , Tricotecenos , Zeolitas , Citocromos c/metabolismo , Tricotecenos/toxicidade
18.
Psychol Res Behav Manag ; 15: 3445-3459, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36471790

RESUMO

Background/Objective: Internalized occupational stigma may develop in physicians as a result of their identification with the public negative labels and stereotypes about them, and then internalization of them as a part of their self-concept. This study aims to develop the Physician Internalized Occupational Stigma Scale (PIOSS) and to examine its reliability and validity. Methods: In study 1, the initial scale was used to investigate 356 physicians. While in study 2, a total of 346 physicians were investigated with the survey tools named the PIOSS, the Career Commitment Scale (CCS), the Workplace Well-Being Scale (WWBS), the Scale for the Doctor with Patient-doctor Relationship (DDPRQ-10), the Intent to Leave Scale (ILS) and the Occupational Disidentification Scale (ODS). Results: The PIOSS includes 19 items divided into 3 dimensions: label identification, status loss, and career denial. The results of confirmatory factor analysis (CFA) reveal that the three-factor model fitted well (χ 2/df=2.574, RMSEA= 0.068, CFI= 0.931, IFI= 0.931, TLI= 0.919, PNFI= 0.762, PCFI= 0.795). The PIOSS total and each dimension scores were significantly negatively correlated with the CCS and the WWBS scores and remarkably positively associated with the DDPRQ-10, the ILS, and the ODS scores. Cronbach's α coefficients for the PIOSS total scale and dimensions ranged from 0.775 to 0.914, and split-half reliability coefficients ranged from 0.801 to 0.931. In addition, the PIOSS exhibited cross-gender invariance. Conclusion: Having good reliability and validity, the PIOSS can serve as a valid tool for the assessment of physician internalized occupational stigma.

19.
J Agric Food Chem ; 70(46): 14805-14815, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36354154

RESUMO

With the growing concern of illegal abuse of amantadine (AMD) and its potential harmful impact on humans, detection of AMD has become an urgent food safety and environmental topic. Biosensing is a promising method for this, but the effective recognition of AMD still remains a challenge. Herein, we isolated an aptamer (Am-20) for AMD through a 14-round iterative selection based on capture-SELEX. The preliminary interaction mechanism between AMD and Am-20 was clarified with the help of docking simulations. Facilitated by a base mutation and truncation strategy, an optimized aptamer Am-20-1 with a short length of 62-mer was obtained, which exhibited competitive affinity with a Kd value of 33.90 ± 5.16 nM. A structure-switching SERS-based aptasensor based on Am-20-1 was then established for AMD quantification via a binary metal nanoparticle-embedded Raman reporter substrate (AuNRs@ATP@AgNPs). The fabricated strategy showed a wide linear range (0.005∼25 ng/mL) and a low limit of detection (0.001 ng/mL) for AMD determination. We envision that the novel aptamer identified in this study will provide a complementary tool for specific recognition and detection of AMD and could assist in the supervision of illegal abuse of AMD.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Ouro , Análise Espectral Raman/métodos , Amantadina , Técnicas Biossensoriais/métodos , Limite de Detecção
20.
Phytomedicine ; 107: 154428, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115171

RESUMO

BACKGROUND: 24-epibrassinolide (EBR) is a ubiquitous steroidal phytohormone with anticancer activity. Yet the cytotoxic effects and mechanism of EBR on hepatocarcinoma (HCC) cells remain elusive. METHODS: Cell counting kit-8 (CCK-8) assay was performed to evaluate cell viability. Real-time cell analysis (RTCA) technology and colony formation assays were used to evaluate cell proliferation. The apoptosis ratio was measured by flow cytometry. Seahorse XFe96 was applied to detect the effects of EBR on cellular bioenergetics. RNA-seq analysis was performed to investigate differences in gene expression profiles. Western blot and qRT-PCR were used to detect the changes in target molecules. RESULTS: EBR induced apoptosis and caused energy restriction in HCC, both of which were related to insulin-like growth factor-binding protein 1 (IGFBP1). EBR rapidly and massively induced IGBFP1, part of which was transcribed by activating transcription factor-4 (ATF4). The accumulation of secreted and cellular IGFBP1 had different important roles, in which secreted IGFBP1 affected cell energy metabolism by inhibiting the phosphorylation of Akt, while intracellular IGFBP1 acted as a pro-survival factor to resist apoptosis. Interestingly, the extracellular signal-regulated kinase (ERK) inhibitor SCH772984 and MAP/ERK kinase (MEK) inhibitor PD98059 not only attenuated the EBR-induced IGFBP1 expression but also the basal expression of IGFBP1. Thus, the treatment of cells with these inhibitors further enhances the cytotoxicity of EBR. CONCLUSION: Taken together, these findings suggested that EBR can be considered as a potential therapeutic compound for HCC due to its pro-apoptosis, restriction of energy metabolism, and other anti-cancer properties. Meanwhile, the high expression of IGFBP1 induced by EBR in HCC contributes to our understanding of the role of IGFBP1 in drug resistance.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Somatomedinas , Fatores Ativadores da Transcrição/farmacologia , Apoptose , Brassinosteroides , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular , Quinases de Proteína Quinase Ativadas por Mitógeno , Reguladores de Crescimento de Plantas/farmacologia , Somatomedinas/farmacologia , Esteroides Heterocíclicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...